6TH ANNUAL VALUE IN CANCER CARE SUMMIT 2019

Afternoon Plenary: Disparities in Cancer Survival

Christopher Flowers MD, MS, FASCO

- Professor of Hematology and Oncology, Winship Cancer Institute at Emory University School of Medicine
- Clinical Director for Oncology Informatics Program
- Director of the lymphoma program at Emory University

WINSHIP CANCER INSTITUTE

A Cancer Center Designated by the National Cancer Institute

3,2019

Disparities in Cancer Survival HICOR Value in Cancer Care Summit

Christopher Flowers, MD, MSc, FASCO Professor, Hematology and Medical Oncology Director, Lymphoma Program Scientific Director, Winship Research Informatics Emory School of Medicine

Disclosures

Consultant: Consultant: Abbvie, Astra Zeneca, Bayer, Celgene (unpaid), Denovo Biopharma, Genentech/Roche (unpaid), Gilead, OptumRx, Karyopharm, Pharmacyclics/Janssen, Spectrum Research Funding: Abbvie, Acerta, Celgene, Gilead, Genentech/Roche, Janssen Pharmaceutical, Millennium/Takeda, Pharmacyclics, TG Therapeutics, Burroughs Wellcome Fund, Eastern Cooperative Oncology Group, National Cancer Institute, V Foundation

[†] Undergoing pilot evaluation in collaboration with CPIC Similar to their prior work described in Warner & Gomez J Community Health 2010

Numbered references refer to our prior publications examining racial disparities in lymphoma at each of these levels

Charting the Future of Cancer Health Disparities Research: A Position Statement From the American Association for Cancer Research, the American Cancer Society, the American Society of Clinical Oncology, and the National Cancer Institute

Blase N. Polite, MD, MPP¹; Lucile L. Adams-Campbell, PhD²; Otis W. Brawley, MD³; Nina Bickell, MD⁴; John M. Carethers, MD⁵; Christopher R. Flowers, MD⁶; Margaret Foti, PhD, MD (hc)⁷; Scarlett Lin Gomez, PhD, MPH⁸; Jennifer J. Griggs, MD, MPH⁹; Christopher S. Lathan, MD, MS, MPH¹⁰; Christopher I. Li, MD, PhD¹¹; J. Leonard Lichtenfeld, MD¹²; Worta McCaskill-Stevens, MD, MS¹³; Electra D. Paskett, PhD¹⁴

 Special Report
 Cancer Research

 Charting the Future of Cancer Health Disparities

 Research: A Position Statement from the American

 Association for Cancer Research, the American

 Cancer Society, the American Society of Clinical

 Oncology, and the National Cancer Institute

 Blase N. Polite¹, Lucile L. Adams-Campbell², Otis W. Brawley³, Nina Bickell⁴, John M. Carethers⁵, Christopher R. Flowers⁶, Margaret Foti⁷, Scarlett Lin Gomez⁸, Jennifer J. Griggs⁵, Christopher S. Lathan⁹, Christopher I. Li¹⁰, J. Leonard Lichtenfeld³, Worta McCaskill-Stevens¹¹, and Electra D. Paskett¹²

VOLUME 35 · NUMBER 26 · SEPTEMBER 10, 2017

JOURNAL OF CLINICAL ONCOLOGY

ASCO SPECIAL ARTICLE

Charting the Future of Cancer Health Disparities Research: A Position Statement From the American Association for Cancer Research, the American Cancer Society, the American Society of Clinical Oncology, and the National Cancer Institute

Blase N. Polite, Lucile L. Adams-Campbell, Otis W. Brawley, Nina Bickell, John M. Carethers, Christopher R. Flowers, Margaret Foti, Scarlett Lin Gomez, Jennifer J. Griggs, Christopher S. Lathan, Christopher I. Li, J. Leonard Lichtenfeld, Worta McCaskill-Stevens, and Electra D. Paskett

Non-Hodgkin Lymphomas

- Non-Hodgkin lymphomas (NHLs)
 - heterogeneous group of B-cell and T-cell neoplasms
 - differing patterns of growth and response to treatment
- Prognosis depends on histologic type, stage, and treatment

EMORY WINSHIP CANCER INSTITUTE

SEER Cancer Statistics Review, 2015. American Cancer Society. Cancer facts and figures 2015. At: http://www.cancer.org/downloads/STT/CAFF2005f4PWSecured.pdf. Accessed December 28, 2015.

Annual Lymphoid Cancers in the US

Survival by Gender and Race for NHL Subtypes

U.S. cancer statistics for lymphoid malignancies by World Health Organization subtypes

Teras LR, DeSantis CE, Morton LM, Cerhan JR, Jemal A, Flowers CR

CA Cancer J Clin. 2016

EMORY

WINSHIP Cancer

INSTITUTE

 (\mathcal{C})

Diffuse Large B-Cell Lymphoma

- Most common lymphoid malignancy
 - 31% of adult NHL
- Aggressive: rapid growth and limited survival in the absence/inadequate tx
- Curable in 50% or more of cases
- Clinical outcomes highly variable

Advances in Treatment Improve Survival for Patients with Lymphoma

Coiffier B, et al. N Engl J Med. 2002. Coiffier B, et al. ASCO 2007. Abstract 8009.

Gene Expression Defines Molecularly and Clinically Distinct Subgroups in DLBCL

Rosenwald et al. J Exp Med 2003;198:851-862

Racial Differences in the Presentation and Outcomes of Diffuse Large B-Cell Lymphoma in the United States

Neha Malik, Pareen J. Shenoy, MBBS, MPH, Kevin Bumpers, MPA, Rajni Sinha, MD, MRCP and Christopher R. Flowers, MD

> Winship Cancer Institute Emory University

Advancing the possibilities...

Advancing the possibilities...

Data Source: SEER

Surveillance, Epidemiology and End Results (SEER)

- Population-based cancer registry
 - collect information on new cancers and survival from specific geographic areas
 - Represents 26% of the US population
- Contains standardized data elements
 - tumor characteristics (including stage and histopathology)
 - patient demographics, baseline characteristics
 - -survival data

Study Population

Diagnosed with DLBCL 1992 to 2005

Age Distribution of DLBCL by Race

DLBCL Demographics by HIV Status: SEER

	White		Black			
	Ν	%	Med Age	N	%	Med Age
HIV+	353	4%	46	126	17%	44
HIV-	3295	39%	68	309	42%	56
Unknown	4852	57%	71	295	41%	56
Total	8500		69	730		53

InterLymph Clustering of Other WHO Classified Lymphoid Malignancies

		White	Black	Other media
NHL Subtype	ICD-O-3	median Age	median Age	age
B-CELL NEOPLASM				
B-cell prolymphocytic leukemia	9833	75.5	57	46.5
Lymphoplasmacytic lymphoma	9671	71	60	69
Follicular lymphoma, NOS	9690	66	56	65
Follicular lymphoma Grade 1	9695	63	58	59
Follicular lymphoma Grade 2	9691	64	60	62
Follicular lymphoma Grade 3	9698	65	55	67
Diffuse large B-cell lymphoma	9680	68	52	66
Immunoblastic diffuse large B-cell lymphoma	9684	60	48	67
Primary effusion lymphoma	9678	58	50.5	
Mediastinal (thymic) large cell lymphoma	9679	35	21.5	39
Burkitt lymphoma	9687	41	39.5	49
T-CELL AND NK-CELL NEOPLASM				
Precursor T-cell neoplasm				
Peripheral T-cell lymphoma, unspecified	9702	65	54	65.5
HODGKIN LYMPHOMA				
Classical Hodgkin lymphoma	9650	50	39	41
Lymphocyte-depleted classical Hodgkin lymphoma	9653	58.5	43	69

Clinical Features at Presentation by Race

	White (n=31,285)	Black (n=2,511)	Other (n=3,213)	p-value W v. B
Characteristic	Percentage			
Stage				
I/II	52%	44%	58%	
III/IV	48%	56%	42%	<.0001

Pts with complete staging (n=7,835)

B Symptoms				
Yes	5.6%	8.5%	5.9%	
No	10.6%	11.4%	13.8%	
Unknown	83.8%	80.1%	80.3%	<.0001

Clinical Features at Presentation by Race

- Black patients with DLBCL
 - Younger Age
 - More Advanced Stage
 - Shorter Survival

Challenges

- Do all patients with DLBCL in the US receive standard chemo-immunotherapy?
- How does modern treatment of DLBCL impact survival in the US?
- Are there clinically differences in DLBCL that may reflect underlying biological variants (ABC vs GCB)?

Disparities in the Use of Chemo-Immunotherapy for Diffuse Large B-Cell Lymphoma in the United States

Christopher Flowers, MD, MSc¹, Stacey Fedewa, MPH², Amy Chen, MD, MPH², Joseph Lipscomb, PhD¹, Otis Brawley, MD², Elizabeth Ward, PhD²

¹Winship Cancer Institute Emory University

²American Cancer Society

Data Source: NCDB

National Cancer Database

- Hospital-based cancer registry jointly sponsored by American Cancer Society & American College of Surgeons
- Contains standardized data elements
 - tumor characteristics (including stage and histopathology), and first course of treatment
 - patient demographics, patient insurance status, county of residence, facility type in which patients were treated

Study Population

- diagnosed with DLBCL (ICD-O codes 9679 & 9680) Jan 1, 2001- Dec 31, 2004
- received all or part of their first course of treatment at the reporting facility

Black Pts with DLBCL Present at Younger Age: NCDB

Characteristics	White (n=31,671)	Black (n=3,001)	p-value
Median Age years (IQR)	70 (57-79)	53 (42-68)	
Age > 60 years	70%	38%	<.0001
Sex, female	48%	46%	0.0341
Stage			<.0001
1/11	46	40	
III/IV	41	45	
Unknown	13	15	

Features at Presentation by Race

- Black patients with DLBCL
 - Younger Age
 - More Advanced Stage
- Black patients with DLBCL
 - More likely Uninsured
 - More likely Medicaid insured
 - Less likely to receive
 Chemoimmunotherapy

Study Limitations

- No direct pharmacy data for rituximab or chemotherapy
 - Comparison to SEER:Medicare
- Pt-level SES is not available in the NCDB
- Additional clinical data influence prognosis and treatment decisions
- Insufficient follow-up to describe impact on outcomes
 - Shenoy ASH 2009 (n=348 W and 107 B)
 - No racial differences in R-CHOP use, but differences in OS

Black/White Differences in the Treatment and Outcomes of Diffuse Large B Cell Lymphoma: A Matched Cohort Analysis

Pareen Shenoy, Kevin Bumpers, Nassoma King, Taoying Huang, Neha Malik, Rajni Sinha, Christopher Flowers

To examine Black/White differences in pts with DLBCL across:

- Baseline characteristics at diagnosis
- Use of CHOP vs. R-CHOP
- Treatment outcomes

Advancing the possibilities...

Advancing the possibilities...

All patients

TMA patients

Conclusions and Future Directions

Racial differences in the presentation of DLBCL

 Younger Age, More Advanced Stage, Shorter Survival

 Racial differences present in other lymphomas

 CLL/SLL, PTCL, FL, HL

 Additional studies are needed to explore etiology and prognostic significance

Whole Exome Sequence Analysis

Whole Exome Sequence Analysis

Genetic heterogeneity of diffuse large B-cell lymphoma

Jenny Zhang^{a,b,1}, Vladimir Grubor^{a,1}, Cassandra L. Love^a, Anjishnu Banerjee^c, Kristy L. Richards^d, Piotr A. Mieczkowski^d, Cherie Dunphy^d, William Choi^e, Wing Yan Au^e, Gopesh Srivastava^e, Patricia L. Lugar^f, David A. Rizzieri^f, Anand S. Lagoo^f, Leon Bernal-Mizrachi^g, Karen P. Mann^g, Christopher Flowers^g, Kikkeri Naresh^h, Andrew Evensⁱ, Leo I. Gordon^j, Magdalena Czader^k, Javed I. Gill^I, Eric D. Hsi^m, Qingquan Liu^a, Alice Fan^a, Katherine Walsh^a, Dereje Jima^a, Lisa L. Smithⁿ, Amy J. Johnsonⁿ, John C. Byrdⁿ, Micah A. Luftig^f, Ting Ni^o, Jun Zhu^o, Amy Chadburn^j, Shawn Levy^p, David Dunson^c, and Sandeep S. Dave^{a,b,f,2}

^aDuke Institute for Genome Sciences and Policy, ^bDuke Cancer Institute and Department of Medicine, and ^cDepartment of Statistical Science, Duke University, Durham, NC 27710; ^dUniversity of North Carolina at Chapel Hill, Chapel Hill, NC 27599; ^eThe University of Hong Kong, Queen Mary Hospital, Hong Kong, China; [†]Duke University Medical Center, Durham NC 27710; ^gEmory University, Atlanta GA 30322; ^hImperial College, London, United Kingdom; ¹University of Massachusetts, Worcester, MA 01655; ⁱNorthwestern University, Chicago IL 60208; ^kIndiana University, Indianapolis IN 46202; ^lBaylor University Medical Center, Dallas TX 75246; ^mCleveland Clinic, Cleveland, OH 44195; ⁿDivision of Hematology and Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210; ^oGenetics and Development Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and ^PHudson Alpha Institute for Biotechnology, Huntsville, AL 35806

Edited* by Elliott Kieff, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, and approved November 27, 2012 (received for review April 2, 2012)

Genetic and Functional Drivers of Diffuse Large B Cell Lymphoma

Cell

Anupama Reddy,^{1,2,22} Jenny Zhang,^{1,2,22} Nicholas S. Davis,^{1,22} Andrea B. Moffitt,^{1,22} Cassandra L. Love,¹ Alexander Waldrop,¹ Sirpa Leppa,³ Annika Pasanen,³ Leo Meriranta,³ Marja-Liisa Karjalainen-Lindsberg,⁵ Peter Nørgaard,⁴ Mette Pedersen,⁴ Anne O. Gang,⁴ Estrid Høgdall,⁴ Tayla B. Heavican,⁶ Waseem Lone,⁵ Javeed Iqbal,⁵ Qiu Qin,¹ Guojie Li,¹ So Young Kim,¹ Jane Healy,¹ Kristy L. Richards,⁶ Yuri Fedoriw,⁶ Leon Bernal-Mizrachi,⁷ Jean L. Koff,⁷ Ashley D. Staton,⁷ Christopher R. Flowers,⁷ Ora Paltiel,⁸ Neta Goldschmidt,⁸ Maria Calaminici,⁹ Andrew Clear,⁹ John Gribben,⁹ Evelyn Nguyen,¹⁰ Magdalena B. Czader,¹⁰ Sarah L. Ondrejka,¹¹ Angela Collie,¹¹ Eric D. Hsi,¹¹ Eric Tse,¹² Rex K.H. Au-Yeung,¹² Yok-Lam Kwong,¹² Gopesh Srivastava,¹² William W.L. Choi,¹² Andrew M. Evens,¹³ Monika Pilichowska,¹³ Manju Sengar,¹⁴ Nishitha Reddy,¹⁵ Shaoying Li,¹⁶ Amy Chadburn,¹⁷ Leo I. Gordon,¹⁸ Elaine S. Jaffe,¹⁹ Shawn Levy,²⁰ Rachel Rempel,¹ Tiffany Tzeng,¹ Lanie E. Happ,¹ Tushar Dave,¹ Deepthi Rajagopalan,¹ Jyotishka Datta,¹ David B. Dunson,²¹ and Sandeep S. Dave^{1,2,23,*}

A framework for understanding the relationships between social, environmental, biological, and patient-related factors and disparities in DLBCL survival (numbers indicate example publications from the references that address specific factors).

Flowers CR , and Nastoupil LJ Blood 2014;123:3530-3531

Conclusions and Future Directions

Racial differences in the presentation of DLBCL

 Younger Age, More Advanced Stage, Shorter Survival

 Racial differences present in other lymphomas

 CLL/SLL, PTCL, FL, HL

 Additional studies are needed to explore etiology and prognostic significance

Georgia State Registry

LEO Cohort Study

(U01 CA195568) The Lymphoma Epidemiology of Outcomes Cohort Study

- **AIMS:** 1) Recruit 12,900 newly diagnosed NHL pts
 - including 3,600 DLBCL and 3,100 FL
 - 2) Build a NHL tumor bank w/ TMA, tumor DNA and RNA
 - 3) Central biorepository: PB, serum, plasma, DNA
 - 4) Collect clinical, epidemiologic, pathology and treatment data
 - 5) Prospectively follow patients for clinical and patient-reported outcomes

GOAL: TO FACILITATE RESEARCH THAT USES LEO INFRASTRUCTU RE AND SUPPORTS INTERACTION WITH LYMPHOMA NCTN

Racial Differences in DLBCL: Georgia

Black

Rural and urban patients with DLBCL and follicular lymphoma have reduced overall survival: a National Cancer DataBase study.

Ritter AJ, Goldstein JS, Ayers AA, Flowers CR. Leuk Lymphoma. 2019 Jan 11:1-12

- National Cancer Data Base (NCDB)
 - National registry: American College of Surgeons and the American Cancer Society
 - >70% of all new cancer diagnoses in the US from >1,500 CoC-accredited hospitals
- Received treatment 2004-2014
 - Rural: counties with <2,500 people
 - Urban: 2,500+ people but <u>NO</u> metro areas of at least 50,000 urbanized people
 - Metro: urbanized population of at least 50,000 in county

Emory Lymphoma Program

Program Goals: To eliminate death and suffering from lymphoma

EMORY

WINSHIP

INSTITUTE

CANCER

