‘Not enough time in my lifetime’
The researchers first dosed the mice with Cytoxan, a drug that depletes some of the animals’ natural T cells (creating space for the engineered cells to grow in the marrow), and then delivered the engineered cells to them by intravenous infusion — no small feat in a mouse, Hingorani said. Eight days later, large numbers of the immune cells had trafficked to the tumor and were showing anti-cancer activity.
That was the first surprise. But somewhat less surprisingly, the T cells started to fizzle out by two to four weeks after infusion, not long enough to significantly counteract the cancer’s growth.
There are scientific solutions to that too-short burst of activity. The researchers are actively pursuing them, but they’ll take time to develop and test.
In the meantime, Stromnes had a simple idea: Give the mice more T cells. The team began giving the mice fresh batches of T cells every two weeks, and each new infusion of cells seemed to work as well as the first.
“So now we have a strategy. It’s not necessarily the most refined, but it’s workable,” Hingorani said. “And it’s also manageable in the clinic.”
In the mouse model of the disease — which is actually slightly more aggressive than the human version, Hingorani said — animals that received T cells engineered to recognize a non-cancerous protein survived on average 54 days after their cancer became detectable. Those that received the mesothelin-directed cells lived an average of 96 days, a 78 percent bump.
Although the researchers weren’t expecting to take this first version of the T-cell therapy to clinic, that’s now their plan.
Stromnes is continuing to work on refining the therapy in mice, but the team has already built the human version of the special T-cell protein that recognizes mesothelin. They’re planning to launch a phase 1 clinical trial to test the therapy’s safety in patients with advanced pancreatic cancer within the next year.
And they’re excited about its potential for these patients.
“As best we can tell, this would be a better therapy than anything that exists for pancreatic cancer right now,” Greenberg said. “It’s hard to be this optimistic without ever having treated a pancreatic cancer patient with this [therapy], but the biology of what we’re doing looks so good.”