Step three: Finding a new home
Ghajar’s research has shown that the outer edge of the blood vessel seems to be a special kind of oasis for traveling tumor cells. If they can make it out of the blood in less than three days and remain right next to the vessel wall, they’re protected. These circulatory river banks protect the tumor cells from destruction by the immune system, but they also protect the patient — to a point.
The tumor cells stay “dormant,” or asleep and undividing, in those special sanctuaries. Ghajar and his research team have identified molecules in some metastatic areas (the lung and bone marrow) that contribute to that dormancy, with the ultimate hope of manipulating that natural system to keep metastatic cells from ever waking up.
As for where the cells settle, it’s clear that metastatic tumors trend toward certain parts of the body – such as the bones, liver, lungs or brain — but it’s not completely clear why. In some cases, cancer cells seem to spread indiscriminately throughout the body, but conditions aren’t favorable for new tumor growth in most organs, so they remain dormant or die.
“It’s like if I threw 100 seeds off the roof of this building, we wouldn’t end up with 100 plants sprouting around Fairview,” Ghajar said. “They’d have to land on soil and that soil would have to be favorable for them to grow.”
But recent research from scientists at Cornell University and others (including Ghajar) has found that tumors can also prime certain areas of the body for metastasis before the cells ever reach it, sending out molecular packages that home specifically to other organs and render them a more fertile ground for metastatic cells.
“All of this happens before a tumor cell even shows up there,” Ghajar said. “Over the course of this little evolution of the organ, a very favorable microenvironment has been set up for tumor cells. … They’re far more effective metastasizers when this happens.”
Step four: Waking up
It’s not clear why some metastatic cells stay dormant for so long while others wake up relatively soon after spreading. About one in five metastatic breast cancer patients won’t get metastases until 10 years after they’ve been treated, Ghajar said.
“You can imagine how crushing that is,” he said. “It’s crushing across the board, but you go 10 years after treatment, you think you’re cured, and all of a sudden you have a relapse.”
During his postdoctoral fellowship with breast cancer researcher Dr. Mina Bissell of the University of California, Berkeley, Ghajar found that when blood vessels change their structure, the metastatic cells sitting in dormancy near those vessels shake off their stupor and start to divide.
And once those cells wake up, they are often much more resistant to chemotherapy than the original tumor — one of the reasons metastasis is so deadly. Ghajar’s research team is studying what the cells do during dormancy, what wakes them up and why they’re so much stronger in the face of conventional treatments once they reawaken.
Here, too, the neighborhood matters.
Ghajar and his team have found that the area right around the blood vessels, besides keeping cells asleep, also confers therapeutic resistance. They want to pinpoint the specific molecules involved and eventually interrupt those molecules with a new kind of metastasis-preventing chemo that breast cancer patients could receive during their initial treatment.
“Why not find a way to make chemotherapy that someone’s already going to get far more effective? We want to prevent them from looking over their shoulder in five or 10 years, wondering if the cancer’s going to come back,” Ghajar said.
Postscript: Can metastasis be stopped before it starts?
Metastasis has a dirty little secret.
Sometimes, metastatic cells are seeded throughout the body before a patient’s primary tumor is even diagnosed. Up to 5 percent of patients with metastatic cancer have what’s known as an unknown primary, meaning their doctors can’t figure out where the cancer started — the primary tumor wasn’t detected before it started spreading.
This phenomenon points to the importance of screening and early detection, but metastasis can begin even when the primary tumor is not yet detectable. Researchers have seen that the cells shed from these tiny tumors are better at spreading and seeding new metastatic tumors.
Ghajar believes that new therapies to prevent or treat metastasis need to focus on the biology of those early spreaders. By the time a primary tumor is detected, it may look very different, genetically speaking, from any metastatic cells released from that tumor earlier in its lifetime — and which now may be lying dormant throughout the patient’s body.
For Ghajar and his colleagues working on new therapeutic avenues, this (even more) depressing side of metastasis means that they may have the best chance of helping the most people with metastatic cancer by focusing on stopping the later steps of the process.
“We’re not trying to stop dissemination, but we are trying to stop metastasis,” he said. “Getting to another organ is most of metastasis, but colonization is the key step. If we can prevent that, then we’re still stopping [metastatic] cancer dead in its tracks.”
Join the conversation. Talk about this story on our Facebook page.