Researchers may be one step closer to a truly effective malaria vaccine, a new study suggests. A genetically modified malaria parasite worked as designed in its first human clinical trial, causing neither malaria nor serious safety problems in the 10 people who volunteered to be infected. It also stimulated an immune response that holds out promise of a more protective vaccine than the single candidate now in pilot studies
The Phase 1 study by scientists at the Seattle-based Center for Infectious Disease Research, or CIDR, and Fred Hutchinson Cancer Research Center was published Wednesday in the journal Science Translational Medicine.
“Our approach permanently and uniformly cripples the very complex malaria parasite so that it cannot cause disease and, instead, effectively primes the immune system,” CIDR’s Dr. Stefan Kappe, one of the paper’s main authors, said in a statement.
Malaria is caused by the Plasmodium parasite and spreads to humans through the bite of an infectious mosquito. With 5,000 genes and a life cycle that involves multiple stages in humans and mosquitos, Plasmodium is far more complex than disease-causing viruses, complicating efforts to develop a vaccine against it.
One vaccine strategy, called attenuation, “teaches” the immune system what to guard against by presenting it with a live but weakened, or attenuated, version of the infecting agent. Viruses are often attenuated by growing generations of them in cultures until they lose some of their fight.
Kappe, a CIDR professor and an affiliate professor at the University of Washington’s Department of Global Health, developed a way to weaken the malaria parasite by knocking out three genes that the organism needs to replicate in the human liver and re-emerge in the bloodstream to cause illness. Called GAP for genetically attenuated parasite, it marks the first time genetic engineering has been used to combat any parasitic disease.
Fred Hutch’s Dr. Jim Kublin, the paper’s first author, led the clinical trial of GAP in humans. At this time, GAPs can only be produced in the salivary glands of mosquitos. So in the trial, each of the 10 volunteers placed their arms over a net-covered cup of mosquitoes and endured 150 to 200 bites in one 10-minute session.
Kublin was pleased with the trial results — and impressed by the volunteers.
“It’s exciting to see the triple [gene] knockout appear fully attenuated and generally safe and well-tolerated,” he said in an interview, while noting that developing a better — and more comfortable — delivery method was a high priority.
As for the volunteers, they were “fantastic,” he said, adding, “All of them said they were willing to come back for more, which is so cool.”