The team’s first study wasn’t wrong; the viruses do cooperate in cells in the lab. But the second question is usually the tougher one, the researchers said.
“There are a lot of differences, obviously, between viruses growing in a controlled setting in a petri dish versus an actual human,” Xue said.
She and Bloom aren’t too glum about their disproven hypothesis, though. That line of inquiry opened new doors in the lab, Bloom said.
Before Xue’s study, he and his colleagues exclusively studied viruses in petri dishes. Now, more members of his laboratory team are using clinical samples as well — an approach that is made possible by the closer collaborations between basic and clinical research at the Hutch, Bloom said.
Some of their findings in petri dishes aren’t holding true in the clinical samples. But they’re already making interesting findings about how flu evolves in the human body — including the discovery that how flu evolves in single people with unusually long infections can hint at how the virus will evolve globally, years later. They never would have done that study if they hadn’t already been trying to follow up their original, cooperating hypothesis.
“It opened this whole new way of trying to think about this,” Bloom said. “Our mindset has changed a lot.”
Prevention hypothesis flipped on its head
Fred Hutch and Swedish cancer prevention researcher Goodman and his epidemiology colleagues had good reason to think the vitamins they were testing in clinical trials could prevent lung cancer.
All of the data pointed to an association between the vitamins and a reduced risk of lung cancer. But the studies hadn’t shown a causative link — just a correlation. So the researchers set out to do large clinical trials comparing high doses of the vitamins to placebos.
In the CARET trial, which Goodman led and was initiated in 1985, 18,000 people at high risk of lung cancer (primarily smokers) were assigned to take either a placebo, vitamin A, beta-carotene (a vitamin A precursor) or a combination of the two supplements. Two other similar trials started in other parts of the world at around the same time also testing beta-carotene’s effect on lung cancer risk.
In a similar vein, at the same time, a small trial suggested that supplemental selenium decreased the incidence of prostate cancer. So in 2001, the SELECT trial launched through SWOG, a nationwide cancer clinical trial consortium, testing whether selenium or high-dose vitamin E or the combination could prevent prostate cancer. SELECT enrolled 35,000 men; Goodman was the study leader for the Seattle area.
Designing and conducting cancer prevention trials where participants take a drug or some other intervention is a tricky business, Goodman said.
“In prevention, most of the people you treat are healthy and will never get cancer,” he said. “So you have to make sure the agent is very safe.”
Previous studies had all pointed to the vitamins being safe — even beneficial. And the vitamins tested in the trials are all naturally occurring as part of our diets. Nobody thought they could possibly hurt.
But that’s exactly what happened. In the CARET study, participants taking the combination of vitamin A and beta-carotene had higher rates of lung cancer than those taking the placebo; other trials testing those vitamins saw similar results. And in the SELECT trial, those taking vitamin E had higher rates of prostate cancer.
All the trials had close monitoring built in and all were stopped early when the researchers saw that the cancer rates were trending the opposite way that they’d expected.
“It was just devastating when we learned the results,” Goodman said. “Everybody [who worked on the trial] was so hopeful. After all, we’re here to prevent cancer.”
When the CARET study stopped, Goodman and his team hired extra people to answer study participants’ questions and the angry phone calls they assumed they would get. But very few phone calls came in.
“They said they were involved in the study for altruistic reasons, and we got an answer,” he said. “One of the benefits of our study is that we did show that high doses of vitamins can be very harmful.”
That was an important finding, Goodman said, because the prevailing dogma at the time was that high doses of vitamins were good for you. Although these studies disproved that commonly held belief, even today not everyone in the general public buys that message.
Another benefit of that difficult experience: The bar for giving healthy people a supplement or drug with the goal of preventing cancer or other disease is much higher now, Goodman said.
“In prevention, [these studies] really changed people’s perceptions about what kind of evidence you need to have before you can invest the time, money, effort, human resources, people’s lives in an intervention study,” he said. “You really need to have good data suggesting that an intervention will be beneficial.”