Putting the cTRPs to work
The next step was testing the utility of the modules to act as scaffolds for biologically important proteins. First, they successfully showed that the modules snapped together when attached to a simple, well-characterized protein with an equally well-characterized target. The team then began testing more-complex proteins that could potentially be used to improve immunotherapy development or production.
Many molecular and biological tools used to characterize and manufacture cancer-killing T cells, the immune cells that form the basis for all the currently Food and Drug Administration-approved cell-based immunotherapies, are difficult and time-consuming to make, Correnti said.
The team sought to make an easier-to-produce version of an MHC tetramer, a molecular complex routinely used to study T cells. Right now, MHC tetramers are produced via an arduous, multistep process that involves expressing the MHC protein in bacteria, purifying it and encouraging it to refold properly before attaching four of them to a separate, four-pronged (or tetrameric) protein known as streptavidin.
Using the cTRP scaffold, the researchers found they could condense this into one easy step by grafting the gene for the MHC protein onto the gene encoding the cTRP component. Mammalian cells easily produced the tetrameric cTRP modules — perfectly folded right from the get-go. When the team tested other proteins commonly used to trigger T cells to multiply, cTRP-based tetramers worked just as well as tetramers produced the old-fashioned way.
A molecular tool kit
By breaking the nano-circles into modules, the team has also expanded their utility, Correnti said. Now cTRPs can be adapted to a researcher’s scientific needs by including anywhere from two to six modules. And the ability to produce them in mammalian cells instead of bacterial cells expands the variety of proteins that could theoretically be attached to the cTRPs.
Right now, the team is working to test as many new cargos as possible, and is hoping that other researchers come up with new cargos and new uses for the donuts. They’re also testing different ways of connecting cargo to scaffold and modifications that could further enhance the usefulness of cTRPs.
Stoddard said the results highlighted the power of interdisciplinary research, drawing on expertise in computational and structural biology to create a molecule with translatable potential.
“We essentially built this molecular tool kit that we can apply to a lot of different types of problems,” Correnti said. “The ideal situation that you want for any technology is for people to find really interesting uses for things that we haven't even thought of.”
The National Institutes of Health and Fred Hutch’s Evergreen Fund. supported this work. Fred Hutch and its scientists who contributed to these discoveries may stand to benefit from their commercialization.