The coronavirus genome has an error-correction mechanism
Influenza and HIV are known for surface structures made of proteins and sugars that rapidly change their shape. Attempts to block HIV with a vaccine have failed for three decades because of that virus’ ability to hide from the human immune system, including from those tiny proteins called antibodies that are raised naturally against HIV’s surface. Influenza viruses are shape shifters as well, because they evolve new surface structures against antibodies from vaccines. That forces vaccine makers to reformulate flu shots against different strains every few years.
Coronaviruses are genetically more stable because they carry within them a mechanism for correcting errors that naturally occur through mutation of their genetic code. The genomes of HIV, flu, and coronavirus are all made of RNA, which is less stable and more prone to error than the DNA that stores our own genetic information. All three viruses mutate because they rely on RNA, but coronaviruses do so more slowly.
Therefore, researchers have reason to hope that if they can come up with a treatment or vaccine that locks onto those signature spikes of coronavirus, it is less likely to make a quick escape and is more likely to be controlled.
One thing that is different about the arrival of SARS-CoV-2 from pandemics of the past is that researchers are now equipped with tools that have enabled them, within weeks of the discovery of the virus, to sequence its genome and model the protein structure of the spikes. Using cryo-electron microscopes — which give scientists astoundingly accurate images of the spike — we already know the knobbly terrain of its surfaces and likely spots on it for antibodies or drugs to dock and possibly disable it.
Fred Hutch scientists — and researchers throughout the world — are feverishly working to find antibodies that naturally attach the SARS-CoV-2 spike, gumming up its ability to enter lung cells so easily. These tiny proteins could be produced in the lab and used as drugs to block the virus, and they might serve as the basis for a new vaccine or blood tests that show prior exposure to the virus. They could prove to be critical in the fight against COVID-19.