A massive database of protein structures
Structural biologist Dr. Barry Stoddard, who has been resolving the shapes of proteins since he joined the Basic Sciences Division of Fred Hutch in 1992, said there has been a “sea change” in the amount and complexity of information generated in the field and in how that data can be analyzed.
“When I was a graduate student in 1985, I was able to find and photocopy almost every important paper describing a protein structure in a single, long afternoon in the MIT library. Today, there are almost 200,000 proteins in the protein structural database,” he said. Until recently, nearly all those structures were solved by a process known as X-ray crystallography.
Much of his work involves that painstaking process of isolating and forming purified crystals of proteins of interest, then bombarding those crystals with brief but powerful bursts of X-rays. The actual shape and structure of those proteins can be inferred by sophisticated analysis of the patterns of light scattered by those crystals.
It is related to the process used by Rosalind Franklin in 1952, when she produced an X-ray photograph of crystalized DNA. It revealed the famed “double helix” structure of those molecules, subsequently described by her colleagues Drs. Francis Crick, James Watson and Maurice Wilkins — for which they were awarded the Nobel Prize in physiology or medicine ten years later.
Although Stoddard built a career using X-ray crystallography — and continues to use it to solve the structure of small proteins — he has become a convert to the use of cryo-EM for the speed and ease with which it can reveal the structure and functions of larger proteins and those that are too big, flexible or complex to be crystallized.
“Cryo-EM is revolutionizing structural biology,” Stoddard said.
That technology now defines the leading edge of microscopy, a field that began in a different world. Using a primitive microscope of his own design, Dutch lens maker Antonie van Leeuwenhoek began in the 1670s to discover tiny life — "little animals" or "animalcules" as translated into English — in pond water samples. Famous in his day, he made important discoveries of bacteria and other microbes and is considered the father of microbiology.