The team attained its first promising results years ago using a single type of meganuclease that proved effective in cutting the herpes virus DNA, but the results were short-lived. The virus could rely on the infected cells’ own DNA-repair programs — which don’t distinguish between viral genes from their own — to fix the break most of the time.
But over time, the researchers found that they could eliminate up to 90% of the latent virus by using a mix of two or three different meganucleases. It is simply harder to repair two breaks than one. With more tinkering, the results continued to improve.
A workhorse of gene therapy
The researchers also refined their methods of transporting the molecular scissors to targeted nerve cells. From the beginning, Jerome and his team have relied on a harmless, hollowed-out virus that is drawn to the surface proteins of nerve cells. Called an adeno-associated virus vector, or AAV, it is the little workhorse of gene therapy. In this case, it is used to ferry to the infected nerve cells genetic instructions that cause them to make those meganucleases.
“We inject the AAV vector, and it finds its way,” Aubert said.
Latent herpes viruses lurk in clusters of nerve cells called ganglia, and researchers have found that some ganglia are harder to reach than others. Over the years, they discovered that some AAV strains are better suited than others to find specific types of nerve clusters, and this has helped them fine-tune the selection of these delivery viruses to match infected cells in different places.
In their mouse experiments, the team continued to improve their results, nudging them up to a 95% reduction in herpesvirus infection in one prominent nerve cluster using a selection of two different meganucleases carried by three different flavors of AAVs. By selecting vectors that are primed for harder-to-reach nerve clusters, the group expects to continue improving their ability to eradicate the virus.